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A BS TRA C T 

The relationships between the sound velocities in the cubic and hexagonal 
crystal structures and the tensor transformations for the two structures are 
applied to determine the elastic st(finesses, Cij and ( d Ci~/T) for the hexagonal 
structures of  SiC to IO00°C. These results are then applied to calculate the 
polycrystalline elastic moduli, E and G, and their temperature variations. The 
calculated values Jor E and G at 20°C are 420 and 180 G Pa and for ( dE/d T) 
and (dG/dT)  the values are -0"020 and -0"007 (GPa/°C),  respectively. 
These agree well with published experimental values .for E and G of  dense 
poO,crystalline alpha silicon carbides. 

I N T R O D U C T I O N  

Silicon carbide can exist in a number of different crystalline polytypes which 
may be classified into the cubic (C), hexagonal (H) and rhombohedral (R) 
space groups. 1'2 The structural differences between these polytypes are in 
their stacking layer sequences. They are unique features which result in some 
of the physical properties of the numerous polytypes being quite similar. 

Practical interest has recently intensified in the calculation of the thermal 
stresses which develop in ceramic or metal matrix composite materials using 
single crystal SiC grains or whiskers as the reinforcing component phase. 3'4 
For  determination of  the thermal stresses at all temperatures, it is necessary 
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to know, or to be able to reliably estimate the single crystal elastic constants 
of  SiC and also their temperature dependencies. However, the single crystal 
elastic constants and their temperature dependencies have never been 
measured for a 'pure' hexagonal polytype. 

This paper initially considers the similarities of  the acoustic wave 
velocities in the cubic and the hexagonal polytypes of SiC, and then utilizes 
tensor transformations relating the single crystal elastic constants of the two 
structures to calculate the single crystal elastic constants and their 
temperature dependencies for all of  the hexagonal SiC polytypes. These 
results are then utilized to estimate the polycrystalline elastic moduli  of  the 
hexagonal polytypes of SiC from room temperature to 1000°C applying 
appropriate averaging procedures. The calculated values are then compared 
with the published measurements of  the polycrystalline elastic moduli  for 
the alpha SiC polytypes. 

SINGLE CRYSTAL ELASTIC CONSTANTS 

Patrick has classified the different physical properties of SiC according to 
their wave-vector dependence. / Properties which depend on the axial and 
transverse wave vectors include the phonon  dispersion spectrum and the 
acoustic wave velocities. The latter are directly related to the single crystal 
elastic constants. Properties which depend on the Brillouin zone boundary 
wave vector include the electron mobilities. Other properties depend on a 
weighted average over all of  the wave vectors, including the thermal 
conductivity and the thermal expansion. These latter two groups of 
properties have been demonstrated to vary considerably with the different 
polytypes; however, the phonon dispersion spectra and the acoustic wave 
velocities are very similar for all of  the polytypes. 

Feldman et  al. have measured the Raman spectra of a number of  the SiC 
structures and have found that the phonon  spectra in the axial direction is 
common to all of the polytypes. 5 Vetelino and Mitra have applied a rigid ion 
model to theoretically calculate the dispersion curves in the [111] direction 
of the (3C) cubic SiC polytype 6 and have obtained results which are in good 
agreement with the Feldman et  al. experimental values. These studies 
confirm that the longitudinal and the transverse acoustic sound velocities 
along the hexagonal SiC polytype [0001] directions, V~ and V~- can be 
assumed to be identical to those along the cubic [111] direction, Vfand V~. 

The hexagonal crystal structures of SiC have P63mc symmetry and 
require five independent single crystal elastic constants for description. 
These can be expressed as either the elastic stiffnesses (C11, C12, C13, C33, 
and C44) or the elastic compliances, the Sij. 7 The relationships between the 
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sound velocities in SiC and the elastic stiffnesses along the [0001] direction 
in a hexagonal crystal are expressed as: 

and 

p V 2 = C~3 (la) 

p V  2 = C~4 (lb) 

where p is the density, and V e and VT are the longitudinal and transverse 
sound velocities, respectively. The relationships between the sound velocities 
and the elastic stiffnesses along the [111] direction in a cubic crystal are 
expressed by: 8 

and 

3 p V  2 = C~1 + 2C~2 + 4C~4 (2a) 

3 p V  2 = C~1 - C~2 + C~4 (2b) 

As previously reported by Feldman et al. and Vetelino and Mitra, the sound 
velocities along the [0001] directions of the hexagonal SiC crystals are 
identical to those along the [111] directions of a cubic SiC crystal. 5'6 Since 
the crystalline densities are also equivalent, several of the single crystal 
elastic constants of the hexagonal and the cubic structures can be related 
through eqns (1) and (2) as has been discussed by Pandey and Dayal. 9 The 
two unique relationships are: 

and 

3C~3 = C~l q- 2C~2 q- 4C~.4 

3C,~,, = C~1 - C~2 + C,~, 4 

(3a) 

Equations (3a) and (3b) can also be derived from the tensor transform- 
ations for the two structures, which confirms that the other single crystal 
elastic constants of hexagonal SiC can also be calculated from the single 
crystal elastic constants of the cubic beta structure. Single crystal elastic 
constants are fourth order tensors and can be expressed in any arbitrary 
direction by: 1° 

Cijkl : ~imO~jnO~ko~lpCmnop (4) 

where the ~ij' etc., are the directional cosines. The Cmnop a r e  the elastic 
stiffnesses in the original crystallographic coordinates and the C~jk~ are the 
stiffnesses in the new orientation. Since a hexagonal 'pseudocell' can be 
specified within any cubic structure with the hexagonal [0001] parallel to the 
cubic [111], the [1210] parallel to the [ i l0 ] ,  and the [i010] parallel to the 

(3b) 
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[112], the single crystal elastic constants of the hexagonal structure of SiC 
can be estimated by utilizing eqn (4) and the transformation matrix: 

061 =/=~,  23| x2 = / -  l/x/6 - l/x/6 2/x/ X2 

[J(3J L@31 0~32 @33J X3 L l /x/3 l /x/3 X3J X3 (5) 

Where the X~, X~ and X~ are the axes of the hexagonal 'pseudocell' along the 
[ i l0] ,  the [ i i2 ]  and the [111] cubic directions, respectively, and X 1, X 2 and 
X 3 are the axes of the cubic crystal along the [100], the [010] and the 1-001] 
directions. Substituting the appropriate ~tj values yields the complete set of 
relationships between the hexagonal and the cubic single crystal elastic 
stiffnesses as: 

and 

2C~'1 = C~1 + C~2 + 2C~4 

3C~3 = C~1 -k- 2C~2 + 4C,~4 
6CP2 = C~l q- 5C~2 - 2C~4 

6C~3 = C~1 -4- 2C~a - 2C~4 

(6a) 
(6b) 
(6c) 

(6d) 

3C~4 = C[1 - C~2 + C~,4 (6e) 

Equations (6b) and (6e) are identical to eqns (3a) and (3b), which were 
determined from the sound velocity considerations. 

Tolpygo has theoretically calculated the Cll,  C12 and C44 values of the 
cubic (3C) beta polytype of SiC at room temperature (20°C) to be 352"3, 140.4 
and 232"9 GPa, respectively. 11 Utilizing Tolpygo's theoretical Cij values and 
eqns (6a-e), the room temperature single crystal elastic stiffnesses of the 
hexagonal structures of SiC can be determined. The calculations are 
summarized in Table 1 along with the experimental elastic stiffnesses which 
have been reported for a mixed, but predominantly (6H) hexagonal polytype 
specimen of SiC by Arlt and Schodder. 12 Comparison of these results 
illustrates that they are in satisfactory agreement, especially considering that 
the (6H) polytype SiC crystal which was experimentally measured by Arlt 
and Schodder also contained some of the (15R) polytype. 

It is appropriate to further compare this analytical approach with the 
experimental results for zinc sulphide, ZnS, which also exists in similarly 
related cubic (3C) and hexagonal (2H) polytype structures. The single crystal 
elastic constants of both the (3C) cubic structure (sphalerite) of ZnS and the 
(2H) hexagonal structure (wurtzite) of ZnS have been measured by different 
researchers? 3,14- The values are listed in Table 1. The elastic stiffnesses of 
cubic (3C) ZnS were transformed to those of the hexagonal ZnS polytype by 
using eqns (6a-e) and are also listed in Table 1. It is evident that the 
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TABLE 2 
Calculated Elastic Stiffnesses and Compliances of Hexagonal SiC at Elevated Temperatures 

T (°C) Stiffnesses (GPa) Compliances ( x 10-3/GPa) 

CII C33 C12 C13 C44 $11 $33 $12 813 $44 

20 479.3 521.6 98.1 55-8 148.3 2.196 1.958 -0.427 -0.189 6.743 
200 474-8 517.1 96.1 53.8 147.0 2-214 1.973 -0-427 -0.186 6.801 
400 469.8 512.1 93.9 51.6 145-6 2.234 1.989 -0.426 -0-182 6-866 
600 464.8 507-1 91.7 49.4 144-2 2.254 2.007 -0.426 -0-180 6.933 
800 459.8 502.1 89.5 47.2 142.8 2-276 2.024 -0.425 -0.174 7-001 

1 000 454.8 497.1 87.3 45.0 141.4 2.297 2-042 -0.424 -0.170 7.070 

dependenc ies  determined.  The  results are summarized  in Table  3 and are 
presented graphical ly  in Fig. 2. The  result ing (dE/dT) and (dG/dT) are 
- 0 - 0 2 0  and - 0 - 0 0 7 G P a / ° C ,  respectively.  These  values  are in g o o d  
agreement  with the experimental  polycrystal l ine  values  that  have been 
reported by several different researchers ~s-21 for commerc ia l  a lpha SiC 
materials  that  are mixtures  o f  h e x a g o n a l  and r h o m b o h e d r a l  polytypes .  
T h o s e  h igh-dens i ty  h e x a g o n a l  SiC (dE/dT) and (dG/dT) experimental  
values range from 0.016 to 0"021 and from 0-006 to 0 - 0 0 9 G P a / ° C ,  
respectively.  

5 0 0  I I I I i 

Young 's  m o d u l u s  ( E )  

4 0 (  . . . . .  

% d E/dT:-O.020 (GPo/°C) 
(3_ 
L~ 

- -  This study (ca lcu la ted  
- -  Chondon 
"~ 50 (  M c H e n r y  ~ Tressler o 
E . . . .  S h o f f e r  ~ dun  

. . . . . . .  M c M u r t r y ,  et ol 

o 
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Fig. 2. Polycrystalline elastic moduli of hexagonal SiC as a function of temperature. 
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TABLE 3 
Calculated Elevated Temperature Polycrystalline Values of Young's 

Modulus, Shear Modulus and Poisson's Ratio for Hexagonal SiC 

T (°C) Young's Modulus Shear Modulus Poisson's Ratio 
E (GPa) G (GPa) v 

20 420 180 0'17 
200 416 178 0-17 
400 412 177 0-17 
600 408 175 0"16 
800 404 174 0"16 

1 000 400 173 0"16 

STACKING LAYER SEQUENCE EFFECTS 

The tensor transformation method discussed for estimating the single 
crystal elastic constants and their temperature dependencies for hexagonal 
SiC is based on the assumption that the effects of the stacking layer 
sequences in the [00013 directions of the hexagonal SiC structures on those 
structures' elastic constants are the same as along the [1113 direction for the 
cubic SiC structure. The results of Feldman e t  al .  5 and those of Vetelino and 
Mitra 6 substantiate that this is indeed the case. However, the stacking layer 
sequences of the various hexagonal polytypes of SiC in the [0001] direction 
are different. The cubic (3C) polytype of SiC has the pure cubic stacking layer 
sequence of ABCABC, while the hexagonal (2H) polytype of SiC has the 
pure hexagonal stacking layer sequence of ABABAB. It is possible to 
describe the remainder of the hexagonal SiC polytypes on a percentage of 
hexagonal stacking fraction. On that basis, the percentage of hexagonal 
stacking layer sequence for the (4H), (6H), and (8H) polytypes are 50%, 33 %, 
and 25%, respectively. It is obvious that the longer period polytypes are all 
less hexagonal in stacking layer sequence content than the (2H) polytype. 
Since the previous derivation of the 'pure' hexagonal layer stacking sequence 
(2H) polytype single crystal elastic constants from the (3C) cubic values have 
been demonstrated to yield excellent agreement for the ZnS case, it may be 
assumed that the results achieved in this study for the (2H) SiC will apply 
equally well to the other hexagonal SiC polytypes. On this basis it is 
concluded that the SiC hexagonal single crystal stiffnesses, C~, which have 
been determined in this study can be applied to all of the hexagonal 
polytypes of SiC. 

The single crystal elastic constants of the rhombohedral (R) structure 
polytypes of SiC and their temperature dependencies can also be estimated 
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using this same tensor t ransformation approach. However,  besides CI 1, C~3, 
CI2, Cr13, and C~4 values, the C14 value is not  equal to zero for the 
rhombohedra l  polytypes. This general approach can also be readily 
extended beyond the polytypes of  SiC as similar procedures can also be 
applied to all other polytype structures with similar, or different structural 
relationships. 22 
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