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ABSTRACT

The relationships between the sound velocities in the cubic and hexagonal
crystal structures and the tensor transformations for the two structures are
applied to determine the elastic stiffnesses, C;;and (dC;;/T) for the hexagonal
structures of SiC to 1000°C. These results are then applied to calculate the
polycrystalline elastic moduli, E and G, and their temperature variations. The
calculated values for E and G at 20°C are 420 and 180 G Pa and for (dE/dT)
and (dG/dT) the values are —0-020 and —0-007 (GPa/°C), respectively.
These agree well with published experimental values for E and G of dense
polycrystalline alpha silicon carbides.

INTRODUCTION

Silicon carbide can exist in a number of different crystalline polytypes which
may be classified into the cubic (C), hexagonal (H) and rhombohedral (R)
space groups.'*? The structural differences between these polytypes are in
their stacking layer sequences. They are unique features which result in some
of the physical properties of the numerous polytypes being quite similar.
Practical interest has recently intensified in the calculation of the thermal
stresses which develop in ceramic or metal matrix composite materials using
single crystal SiC grains or whiskers as the reinforcing component phase.>*
For determination of the thermal stresses at all temperatures, it is necessary
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to know, or to be able to reliably estimate the single crystal elastic constants
of SiC and also their temperature dependencies. However, the single crystal
elastic constants and their temperature dependencies have never been
measured for a ‘pure’ hexagonal polytype.

This paper initially considers the similarities of the acoustic wave
velocities in the cubic and the hexagonal polytypes of SiC, and then utilizes
tensor transformations relating the single crystal elastic constants of the two
structures to calculate the single crystal elastic constants and their
temperature dependencies for all of the hexagonal SiC polytypes. These
results are then utilized to estimate the polycrystalline elastic moduli of the
hexagonal polytypes of SiC from room temperature to 1000°C applying
appropriate averaging procedures. The calculated values are then compared
with the published measurements of the polycrystalline elastic moduli for
the alpha SiC polytypes.

SINGLE CRYSTAL ELASTIC CONSTANTS

Patrick has classified the different physical properties of SiC according to
their wave-vector dependence.? Properties which depend on the axial and
transverse wave vectors include the phonon dispersion spectrum and the
acoustic wave velocities. The latter are directly related to the single crystal
elastic constants. Properties which depend on the Brillouin zone boundary
wave vector include the electron mobilities. Other properties depend on a
weighted average over all of the wave vectors, including the thermal
conductivity and the thermal expansion. These latter two groups of
properties have been demonstrated to vary considerably with the different
polytypes; however, the phonon dispersion spectra and the acoustic wave
velocities are very similar for all of the polytypes.

Feldman et al. have measured the Raman spectra of a number of the SiC
structures and have found that the phonon spectra in the axial direction is
common to all of the polytypes.® Vetelino and Mitra have applied a rigid ion
model to theoretically calculate the dispersion curves in the [111] direction
of the (3C) cubic SiC polytype® and have obtained results which are in good
agreement with the Feldman et al. experimental values. These studies
confirm that the longitudinal and the transverse acoustic sound velocities
along the hexagonal SiC polytype [0001] directions, V! and V¥ can be
assumed to be identical to those along the cubic [111] direction, V'{and V¢,

The hexagonal crystal structures of SiC have P6;mc symmetry and
require five independent single crystal elastic constants for description.
These can be expressed as either the elastic stiffnesses (C,;, Cy5, C;3, Cs3,
and C,,) or the elastic compliances, the S;;.” The relationships between the
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sound velocities in SiC and the elastic stiffnesses along the [0001] direction
in a hexagonal crystal are expressed as:

pVE=Cly (1a)
and
pVi=Ch, (1b)

where p is the density, and V; and V; are the longitudinal and transverse
sound velocities, respectively. The relationships between the sound velocities
and the elastic stiffnesses along the [111] direction in a cubic crystal are
expressed by:®

and
3pVi=Ct — Ci+ Cia (2b)

As previously reported by Feldman et al. and Vetelino and Mitra, the sound
velocities along the [0001] directions of the hexagonal SiC crystals are
identical to those along the [111] directions of a cubic SiC crystal.>*® Since
the crystalline densities are also equivalent, several of the single crystal
elastic constants of the hexagonal and the cubic structures can be related
through eqns (1) and (2) as has been discussed by Pandey and Dayal.® The
two unique relationships are:

3CY, =C5, +2C5,+4C5, (3a)
and
3Ch=C} —Ci,+ C4y (3b)

Equations (3a) and (3b) can also be derived from the tensor transform-
ations for the two structures, which confirms that the other single crystal
elastic constants of hexagonal SiC can also be calculated from the single
crystal elastic constants of the cubic beta structure. Single crystal elastic
constants are fourth order tensors and can be expressed in any arbitrary
direction by:!°

Ci,jkl = 0y akodlpcmnop (4)

m=in

where the «;;, etc., are the directional cosines. The C,,,, are the elastic
stiffnesses in the original crystallographic coordinates and the C;,, are the
stiffnesses in the new orientation. Since a hexagonal ‘pseudocell’ can be
specified within any cubic structure with the hexagonal [0001] parallel to the

cubic [111], the [1210] parallel to the [110], and the [1010] parallel to the
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[112], the single crystal elastic constants of the hexagonal structure of SiC
can be estimated by utilizing eqn (4) and the transformation matrix:

X Ay %y A3 | | X 1/\/2 _1/\/2 0 X,
Xy|=|on %2 an| | Xa]|=|-14/6 —1/6 2//6] |X,
X3 a3 O3z %33 | X 1/\/3 1/\/3 X3 X;1 (5

Where the X}, X3 and X7 are the axes of the hexagonal ‘pseudocell’ along the
[110], the [112] and the [111] cubic directions, respectively, and X, X, and
X are the axes of the cubic crystal along the [100], the [010] and the [001]
directions. Substituting the appropriate «;; values yields the complete set of
relationships between the hexagonal and the cubic single crystal elastic
stiffnesses as:

2Ch, =C5 + Ci,+2C5, (6a)

3Ch,=C§, +2C5, +4C3, (6b)

6CY, =Cs, +5C5, —2C5, (6¢c)

6Cry=CS, +2C5, —2C5, (6d)
and

3Cl,=Ci —Ci, + C3, (6¢e)

Equations (6b) and (6e) are identical to eqns (3a) and (3b), which were
determined from the sound velocity considerations.

Tolpygo has theoretically calculated the C,,, C,, and C,, values of the
cubic (3C) beta polytype of SiC at room temperature (20°C) to be 352-3, 140-4
and 232-9 GPa, respectively.'! Utilizing Tolpygo’s theoretical C;; values and
eqns (6a—e), the room temperature single crystal elastic stiffnesses of the
hexagonal structures of SiC can be determined. The calculations are
summarized in Table 1 along with the experimental elastic stiffnesses which
have been reported for a mixed, but predominantly (6H) hexagonal polytype
specimen of SiC by Arlt and Schodder.'? Comparison of these results
illustrates that they are in satisfactory agreement, especially considering that
the (6H) polytype SiC crystal which was experimentally measured by Arlt
and Schodder also contained some of the (15R) polytype.

It is appropriate to further compare this analytical approach with the
experimental results for zinc sulphide, ZnS, which also exists in similarly
related cubic (3C) and hexagonal (2H) polytype structures. The single crystal
elastic constants of both the (3C) cubic structure (sphalerite) of ZnS and the
(2H) hexagonal structure (wurtzite) of ZnS have been measured by different
researchers.’*-'# The values are listed in Table 1. The elastic stiffnesses of
cubic (3C) ZnS were transformed to those of the hexagonal ZnS polytype by
using eqns (6a—e) and are also listed in Table 1. It is evident that the
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TABLE 1
Room Temperature Single Crystal Elastic Stiffnesses of SiC and ZnS (GPa)

Sic* ZnS*?

Cl 1 C33 Cl 2 C13 C44 Cl 1 C33 C‘l 2 Cl 3 C44

Cubic values 3523 — 1404 — 2329 1046 — 653 — 461
Hexagonal values 500 564 92 — 168 124 140 60 45 286
Transformed

values® 479 521 98 56 148 131 140 56 48 285

@ Cubic values;'! hexagonal values.!®
b Cubic values;'3 hexagonal values.!4
¢ After eqns (6a—e).

transformed values are in excellent agreement with the reported experi-
mental values which further supports the validity of the transformation
procedures.

TEMPERATURE DEPENDENCIES OF THE C;;

The temperature dependencies of the. single crystal and polycrystalline
elastic constants of numerous crystalline solids have been expressed by
different empirical equations over wide temperature ranges. Above room
temperature, most ceramic materials exhibit an extensive region of linear
decrease of the elastic constants with increasing temperature.'> These can be
expressed as:

C,;=C+b,T (7

where the C{) are the 0°C values and the b;; are constants which are equal to
(dC;y/dT).

The b,; and temperature dependencies of the C;; for the cubic (3C) beta
SiC have been determined from room temperature to 1000°C.!® The
(dCs$,/dT),(dCs,/dT)(dC5,/dT) values for the cubic (3C) beta SiC polytype
are —0:025, —0-011, and —0-007 GPa/°C, respectively. To calculate the
temperature dependencies of the C}} values, the (dC}}/dT) for the hexagonal
SiC structures, eqns (6a—¢) can be differentiated with respect to temperature.
For example eqn (6a) yields:

dch,\  1/dCs,\ | 1(dCS, | (dCs,
(dT)‘E(dT ta\tar ) \ar (82)
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and eqn (6b) yields:

dcs, 1/dCs, 2(dcCs, 4/dCs,
<dT>_3< dT>+3< dT>+3< dT) (85)
The other stiffness relationships (6c—e) can be similarly differentiated so that
by applying previously determined (dCf;/dT) values for the cubic (3C) beta
SiC polytype,'® the (dC;/d T) values for the hexagonal SiC structures can be
estimated.

Using the (dCf;/dT) values and the transformed room temperature C}
values, rather than the experimental measurements by Arlt and Schodder
which do not contain a C, ; value, the single crystal elastic stiffnesses for the
hexagonal SiC structure were calculated through 1000°C. The results are
illustrated in Fig. 1 and are summarized in Table 2. The elastic compliances,
the SP', can also be readily calculated,” and are listed in Table 2 from room
temperature through 1000°C.

The polycrystalline Young’s modulus and shear modulus of hexagonal
SiC can be estimated at elevated temperatures from the C{, and S}} values
and the mean value of the Voigt and Reuss averages.!” Other averaging
schemes may also be applied. Utilizing the elastic constants for the
hexagonal SiC structure listed in Table 2, the average polycrystalline elastic
moduli at elevated temperatures were calculated and their temperature
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Fig. 1. Single crystal clastic stiffnesses of hexagonal SiC as a function of temperature.
Figures in parentheses are the gradients (dC;;/dT) in GPa/°C.
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TABLE 2
Calculated Elastic Stiffnesses and Compliances of Hexagonal SiC at Elevated Temperatures

T(°C) Stiffnesses (G Pa) Compliances (x 1073/G Pa)

Cll C33 C12 Cl3 C44 Sll S33 S12 SIB S44

20 4793 5216 981 558 1483 2196 1958 —0427 —0189 6743
200 4748 5171 961 538 1470 2214 1973 —0427 —0-186 6801
400 4698 51211 939 516 1456 2234 1989 —0426 —0182 6866
600 4648 5071 917 494 1442 2254 2007 —0426 —0180 6933
800 4598 5021 895 472 1428 2276 2024 -—-0425 —0-174 7-001

1000 4548 4971 873 450 1414 2297 2042 -—0424 —0170 7070

dependencies determined. The results are summarized in Table 3 and are
presented graphically in Fig. 2. The resulting (dE/dT) and (dG/dT) are
—0-:020 and —0-007GPa/°C, respectively. These values are in good
agreement with the experimental polycrystalline values that have been
reported by several different researchers!®~2! for commercial alpha SiC
materials that are mixtures of hexagonal and rhombohedral polytypes.
Those high-density hexagonal SiC (dE/dT) and (dG/dT) experimental
values range from 0016 to 0-021 and from 0006 to 0-009 GPa/°C,
respectively.
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Fig. 2. Polycrystalline elastic moduli of hexagonal SiC as a function of temperature.



8 Z. Li, R. C. Brad:

TABLE 3
Calculated Elevated Temperature Polycrystalline Values of Young’s
Modulus, Shear Modulus and Poisson’s Ratio for Hexagonal SiC

T(°C) Young's Modulus Shear Modulus Poisson’s Ratio

E (GPa) G (GPa) v
20 420 180 0-17
200 416 178 0-17
400 412 177 0-17
600 408 175 016
800 404 174 0-16
1000 400 173 016

STACKING LAYER SEQUENCE EFFECTS

The tensor transformation method discussed for estimating the single
crystal elastic constants and their temperature dependencies for hexagonal
SiC is based on the assumption that the effects of the stacking layer
sequences in the [0001] directions of the hexagonal SiC structures on those
structures’ elastic constants are the same as along the [111] direction for the
cubic SiC structure. The results of Feldman et al.> and those of Vetelino and
Mitra® substantiate that this is indeed the case. However, the stacking layer
sequences of the various hexagonal polytypes of SiC in the [0001] direction
are different. The cubic (3C) polytype of SiC has the pure cubic stacking layer
sequence of ABCABC, while the hexagonal (2H) polytype of SiC has the
pure hexagonal stacking layer sequence of ABABAB. It is possible to
describe the remainder of the hexagonal SiC polytypes on a percentage of
hexagonal stacking fraction. On that basis, the percentage of hexagonal
stacking layer sequence for the (4H), (6H), and (8H) polytypes are 50%, 33%,
and 25%, respectively. It is obvious that the longer period polytypes are all
less hexagonal in stacking layer sequence content than the (2H) polytype.
Since the previous derivation of the ‘pure’ hexagonal layer stacking sequence
(2H) polytype single crystal elastic constants from the (3C) cubic values have
been demonstrated to yield excellent agreement for the ZnS case, it may be
assumed that the results achieved in this study for the (2H) SiC will apply
equally well to the other hexagonal SiC polytypes. On this basis it is
concluded that the SiC hexagonal single crystal stiffnesses, Cf}, which have
been determined in this study can be applied to all of the hexagonal
polytypes of SiC.

The single crystal elastic constants of the rhombohedral (R) structure
polytypes of SiC and their temperature dependencies can also be estimated
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using this same tensor transformation approach. However, besides C{,, C33,

1, Cis, and Cji, values, the Cj, value is not equal to zero for the
rhombohedral polytypes. This general approach can also be readily
extended beyond the polytypes of SiC as similar procedures can also be
applied to all other polytype structures with similar, or different structural
relationships.??
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